consortium

Part of the new R/Insurance Webinar Series

R performance culture

24 January 2024

Benedikt Schamberger, Swiss Re | R Consortium - R/Insurance Series, 24 January 2024

Welcome to the webinar!

R/insurance webinar series

1) From Excel to programming in R

2) From programming in R to putting R into production

3) R performance culture

4) High performance programming in R

Delivered on behalf of the R Consortium by Georgios Bakoloukas and Benedikt Schamberger, Actuarial Control, Group Risk Management, Swiss Re

Background to Swiss Re's R community

Large actuarial R programming, Atelier, community

- Swiss Re internal R community sponsored by our Group Chief Actuary Philip Long (<u>Atelier programme</u>)
- 2000+ community with 500+ regular coders who also support each other
- The case we see today relates to code optimisations we did for experience study work, ie comparing how an insurance portfolio performed to initial expectations
- Views expressed belong solely to the speakers and not necessarily to the speaker's employer

We should forget about small efficiencies, say about 97% of the time: **premature optimization is the root of all evil**. Yet we should not pass up our opportunities in that critical 3%.

Donald Knuth Author of *The Art of Computer Programming,* creator of TeX, ACM Turing Award recipient

R is designed for flexibility, but can have high performance R's data.table can be one of the fastest ways to manipulate data

R's data.table can be one of the fastest ways to manipulate data

Database-like ops benchmark developed by Matt Dowle. More information at https://h2oai.github.io/db-benchmark/. Results as of middle 2021.

The R ecosystem provides guidance and tools to tune performance There are tools ranging from general guidelines, to scripts and single lines of code

Performance tips in Advanced R

Code profiling with profvis

Flame Graph	Data							Opti	ons •
<expr></expr>						Memo	гу	Time	
1 library(profvis)								
2									
3 profvis({								
4 data(d	iamonds, pa	ackage = "	ggplot2")						
5									
6 plot(price ~ carat, data = diamonds)									
7 m <- 1		5.3	10						
<pre>8 abline(m, col = "red")</pre>									
9 })									
									-
									-
									-
									_ rt
									H
plot.xv									
plot.default									
plot.formula									
Г I	1		1	1	1	1	1	- T	
0 100	200	300	400	500	600	700	800	900	
Sample Interval:	10m s							q	70m
sample meervan									

Compare alternatives with bench

<pre>library(bench) set.seed(42) dat <- data.frame(x = runif(10000, 1, 1000), y=runif(10000, 1, 1000)) bnch <- bench::mark(dat[dat\$x > 500,], dat[which(dat\$x > 500),], subset(dat, x > 500))</pre>											
<pre>bnch #> # A tibble: 3 x 6 #> expression #> + > 0 dat[dat\$x > 500,] #> 1 dat[dat\$x > 500,] #> 2 dat[which(dat\$x > 500),] #> 3 subset(dat, x > 500)</pre>	min ≺bch:tm≻ 358µs 261µs 486µs	median <bch:tm≻ 443µs 338µs 573µs</bch:tm≻ 	`itr/sec` <dbl> 2184. 2879. 1696.</dbl>	mem_alloc <bch:byt> 377KB 260KB 509KB</bch:byt>	`gc/sec` <dbl> 13.5 13.5 16.1</dbl>						

Advanced R Second Edition "Improve performance" section of the e-book at https://adv-r.hadley.nz/perf-improve.html profvis R package at https://rstudio.github.io/profvis/ bench R package at https://github.com/r-lib/bench Trade-offs and considerations beyond performance Performance is not the only goal to consider

How complex is the code?

How many lines of code and dependencies are there? How well documented and user friendly is it?

Case study: simplified experience study exposure calculation – 1/4 dplyr version

```
calculate_exposures_simple_dplyr <- function(df, observation_start, observation end, ...) {</pre>
   df |>
   mutate(
     iss age = if else(
        !is.na(insured_birthdate) & !is.na(policy_issue_date),
        as.integer((policy issue date - insured birthdate) / 365.25),
   mutate(
     iss month = month(policy issue date),
                = day(policy_issue_date),
     iss_day
     iss_year = year(policy_issue_date),
                = pmax(policy_issue_date, observation_start, na.rm = TRUE),
     start
                = pmin(expo end date, observation end, na.rm = TRUE),
     end
     start_year = year(start),
     end_year = year(end)
. . .
```

Case study: simplified experience study exposure calculation – 2/4 dtplyr version

```
calculate exposures simple dtplyr <- function(df, observation start, observation end, ...) {
 setDT(df)
 df |>
   lazy dt(immutable = FALSE) |>
   mutate(
     iss age = if else(
       !is.na(insured_birthdate) & !is.na(policy_issue_date),
       as.integer((policy_issue_date - insured_birthdate) / 365.25),
    ) |>
   mutate(
     iss_month = month(policy_issue_date),
              = day(policy_issue_date),
     iss day
     iss_year = year(policy_issue_date)
     |>
   mutate(
                = pmax(policy issue date, observation start, na.rm = TRUE),
     start
                = pmin(expo end date, observation end, na.rm = TRUE)
     end
    ) |>
   mutate(
     start year = year(start),
     end_year = year(end)
    ) |>
    as.data.frame()
```

Case study: simplified experience study exposure calculation – 3/4 data.table version

calculate_exposures_simple_dt <- function(dt, observation_start, observation_end, ...) {</pre>

```
dt[
  !is.na(insured_birthdate) & !is.na(policy_issue_date),
  iss_age := as.integer((policy_issue_date - insured_birthdate) / 365.25)][
  , ":="(iss_month = month(policy_issue_date),
        iss_day = day(policy_issue_date),
        iss_year = year(policy_issue_date))][
  , ":="(start = pmax(policy_issue_date, observation_start, na.rm = TRUE),
        end = pmin(expo_end_date, observation_end, na.rm = TRUE))][
  , ":="(start_year = year(start), end_year = year(end))]
```

•••

Case study: simplified experience study exposure calculation – 4/4 Civersion

R code

```
calculate_exposures_simple_c <- function(df, observation_start, observation_end, ...) {
    .Call("Ccalculate_exposures_simple", df, observation_start, observation_end, ...)
}</pre>
```

C code

```
#include <R.h>
#include <Rinternals.h>
#include <Rinternals.h>
#include <omp.h>
...
SEXP Ccalculate_exposures_simple(SEXP df, SEXP observation_start, SEXP observation_end, ...) {
    // Multi-threading via OpenMP
    const int n_th = MAX(1,MIN(INTEGER(n_threads)[0], omp_get_num_procs()));
    const int obs_start = (int) REAL(observation_start)[0];
    ...
#pragma omp parallel for num_threads(n_th)
    for (R_xlen_t i = 0; i < n_out; ++i) {
        ...
        iss_agep[i] = (int)((policy_issue_datep[i] - insured_birthdatep[i]) / 365.25);
        endp[i] = MIN(expo_end_datep[i], obs_end);
        ...
    }
</pre>
```

Start exploring how to improve critical code Choose the right trade-offs with R's toolbox

R can be performant and scalable R ecosystem offers several tools to improve code

Keep trade-offs in mind

R Consortium Impact

- R Consortium Community Grants and Sponsorships Over USD \$1.4 Million
- Organize large scale collaborative projects
 - R Validation Hub
 - R-Ladies
 - Diversity and Inclusion Working Group
- Co-host multidisciplinary data science forums
 - Stanford Data Institute
- Direct support for key **R events**
 - R/Medicine, R/Pharma, useR!, LatinR, more
- Direct support for **R User Groups**

Ladies

Email Joseph Rickert at director@rconsortium.org to set up first call

Benedikt Schamberger, Swiss Re | R Consortium - R/Insurance Series, 24 January 2024

ATINR