Part of the new R/Insurance Webinar Series

24 January 2024
Welcome to the webinar!
R/insurance webinar series

1) From Excel to programming in R
2) From programming in R to putting R into production
3) R performance culture
4) High performance programming in R

Delivered on behalf of the R Consortium by Georgios Bakoloukas and Benedikt Schamberger, Actuarial Control, Group Risk Management, Swiss Re
Background to Swiss Re’s R community
Large actuarial R programming, Atelier, community

• Swiss Re internal R community sponsored by our Group Chief Actuary Philip Long (Atelier programme)
• 2000+ community with 500+ regular coders who also support each other
• The case we see today relates to code optimisations we did for experience study work, ie comparing how an insurance portfolio performed to initial expectations
• Views expressed belong solely to the speakers and not necessarily to the speaker’s employer
We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%.

Donald Knuth
Author of *The Art of Computer Programming*, creator of TeX, ACM Turing Award recipient
R is designed for flexibility, but can have high performance
R’s data.table can be one of the fastest ways to manipulate data

<table>
<thead>
<tr>
<th>Database-like ops benchmark</th>
<th>Runtime (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polars (Rust/Python)</td>
<td>143</td>
</tr>
<tr>
<td>data.table (R)</td>
<td>155</td>
</tr>
<tr>
<td>DataFrame.jl (Julia)</td>
<td>200</td>
</tr>
<tr>
<td>ClickHouse (database)</td>
<td>256</td>
</tr>
<tr>
<td>cuDF (Python)</td>
<td>492</td>
</tr>
<tr>
<td>Spark (Scala)</td>
<td>568</td>
</tr>
<tr>
<td>(py)datatable (Python)</td>
<td>730</td>
</tr>
</tbody>
</table>

The R ecosystem provides guidance and tools to tune performance
There are tools ranging from general guidelines, to scripts and single lines of code

Performance tips in Advanced R

Code profiling with profvis

Compare alternatives with bench

profvis R package at https://rstudio.github.io/profvis/
bench R package at https://github.com/r-lib/bench
Trade-offs and considerations beyond performance
Performance is not the only goal to consider

How complex is the code?

How many lines of code and dependencies are there?

How well documented and user friendly is it?
Case study: simplified experience study exposure calculation – 1/4
dplyr version

calculate_exposures_simple_dplyr <- function(df, observation_start, observation_end, ...)
{
 df |>
 mutate(
 iss_age = if_else(!is.na(insured_birthdate) & !is.na(policy_issue_date),
 as.integer((policy_issue_date - insured_birthdate) / 365.25),
 NA_integer_)
) |>
 mutate(
 iss_month = month(policy_issue_date),
 iss_day = day(policy_issue_date),
 iss_year = year(policy_issue_date),
 start = pmax(policy_issue_date, observation_start, na.rm = TRUE),
 end = pmin(expo_end_date, observation_end, na.rm = TRUE),
 start_year = year(start),
 end_year = year(end)
)
...

Case study: simplified experience study exposure calculation – 2/4
dtplyr version

```r
calculate_exposures_simple_dtplyr <- function(df, observation_start, observation_end, ...) {
  setDT(df)
  df |> lazy_dt(immutable = FALSE) |> mutate(
    iss_age = if_else(!is.na(insured_birthdate) & !is.na(policy_issue_date),
      as.integer((policy_issue_date - insured_birthdate) / 365.25),
      NA_integer_)
  ) |> mutate(
    iss_month = month(policy_issue_date),
    iss_day = day(policy_issue_date),
    iss_year = year(policy_issue_date)
  ) |> mutate(
    start = pmax(policy_issue_date, observation_start, na.rm = TRUE),
    end = pmin(expo_end_date, observation_end, na.rm = TRUE)
  ) |> mutate(
    start_year = year(start),
    end_year = year(end)
  ) |> as.data.frame()
...
```
Case study: simplified experience study exposure calculation – 3/4

data.table version

calculate_exposures_simple_dt <- function(dt, observation_start, observation_end, ...) {

dt[
 !is.na(insured_birthdate) & !is.na(policy_issue_date),
 iss_age := as.integer((policy_issue_date - insured_birthdate) / 365.25)[][
 , "="(iss_month = month(policy_issue_date),
 iss_day = day(policy_issue_date),
 iss_year = year(policy_issue_date))[][[
 , "="(start = pmax(policy_issue_date, observation_start, na.rm = TRUE),
 end = pmin(expo_end_date, observation_end, na.rm = TRUE))[][[
 , "="(start_year = year(start), end_year = year(end))
]
...
Case study: simplified experience study exposure calculation – 4/4

C version

R code

calculate_exposures_simple_c <- function(df, observation_start, observation_end, ...) {
 .Call("Ccalculate_exposures_simple", df, observation_start, observation_end, ...)
}

C code

#include <R.h>
#include <Rinternals.h>
#include <omp.h>
...

SEXP Ccalculate_exposures_simple(SEXP df, SEXP observation_start, SEXP observation_end, ...) {
 // Multi-threading via OpenMP
 const int n_th = MAX(1,MIN(INTEGER(n_threads)[0], omp_get_num_procs()));
 const int obs_start = (int) REAL(observation_start)[0];
 ...
 #pragma omp parallel for num_threads(n_th)
 for (R_xlen_t i = 0; i < n_out; ++i) {
 ...
 iss_agep[i] = (int)((policy_issue_datep[i] - insured_birthdatep[i]) / 365.25);
 endp[i] = MIN(expo_end_datep[i], obs_end);
 ...
 }
 ...

Start exploring how to improve critical code
Choose the right trade-offs with R’s toolbox

- R can be performant and scalable
- R ecosystem offers several tools to improve code
- Keep trade-offs in mind
R Consortium Impact

- R Consortium Community **Grants** and Sponsorships Over **USD $1.4 Million**
- Organize large scale **collaborative projects**
 - R Validation Hub
 - R-Ladies
 - Diversity and Inclusion Working Group
- Co-host multidisciplinary **data science forums**
 - Stanford Data Institute
- Direct support for key **R events**
 - R/Medicine, R/Pharma, useR!, LatinR, more
- Direct support for **R User Groups**

Organizations Can Become a Member Today!

Email Joseph Rickert at **director@r-consortium.org** to set up first call