R/Insurance Webinars
Jan 2024

For the R Consortium’s R/Adoption Series

Welcome

Welcome

1. From Excel to programming in R

2. From programming in R to putting R into production
(today’s topic)

3. R performance culture

4. High performance programming in R

Delivered on behalf of the R Consortium by Georgios
Bakoloukas and Benedikt Schamberger, Actuarial Control,
Group Risk Management, Swiss Re

Background

e Swiss Re internal R community sponsored by our Group
Chief Actuary Philip Long (Atelier programme)

e 2000+ community with 500+ regular coders who also
support each other

e The case we see today appeared in our Microsoft Teams
community channel by an actuary in a high-growth market

e Views expressed belong solely to the speakers and not
necessarily to the speaker’s employer

Running example for webinars 1 & 2

e |nsurer covers the remaining balance of loans in case of
death/disability of the borrower

e Requires a quote for a portfolio of ca. 300,000 policies

e Has provided information on a) loan amount b) loan
duration and c) interest rate for each policy

e Problem: The actuary needs to calculate the sum-insured
profile for each policy as it amortises

e Asolutionin Excel and a potential solutionin R

e Putting the solution ‘into production’ with R

A credit life insurance quote

Data input
Loan Amount
Loan Term (in years)

Parameter input
Interest Rate (Annual Percentage Rate)

Meodelling and Qutput
Equivalent monthly payment
EMI

Total Payments

Total Interest

Key
Inputs
Distinct calc in column

1,000

36

10%
0.83%

32.27
1,161.62
161.62

Balance - BoP

1,200.00

1,000.00

B00.00

600.00

400.00

200.00

Modelling and output
Monthly cashflows

Time-months

1 3 5 7 9 11 13 15 17 1% 21 23 25 27 2% 31 33 35

O~ D WM =

(25 INVIRN o% I R R T T TR L TR O T O O R o R L T L T L I e R e R R R R
D o W = 0w D R W= 0003 W= DD

Balance - BoP
1,000.00
976.07
951.93
927.60
903.06
87832
853.37
82822
802 .85
77727
751.48
725.48
699.26
67282
646.16
619.27
59217
564.84
537.28
509.49
481.46
453 21
42472
395.99
367.02
337.81
308.36
278.67
248 72
21853
188.08
157.38
126.42
95.21
63.74
32.00

Interest

8.33
8.13
7.93
71.73
7.563
7.32
7.11
6.90
6.69
6.48
6.26
6.05
b.83
b.61
5.38
b.16
4.93
471
4.48
425
4.01
3.78
3.54
3.30
3.06
2.82
2.57
2.32
2.07
1.82
1.57
1.31
1.05
0.79
0.53
0.27

‘Pnnmpa

23.93
2413
2433
24.54
24.74
24 95
25.16
256.37
25.68
25.79
26.00
26.22
26.44
26.66
26.88
2711
27.33
27.56
27.79
28.02
28.2b
28.49
28.73
28.97
29.21
29.45
29.70
29.94
30.19
30.4b
30.70
30.96
31.21
31.47
31.74
32.00

Y Balance - EoP
976.07
951.93
92760
903.06
87832
8563.37
828.22
802.85
77727
751.48
725 48
699.26
672.82
646.16
619.27
h92.17
H64 84
537.28
509.49
481.46
453 21
424 72
395.99
367.02
337.81
308.36
27867
248.72
21863
188.08
157.38
126.42

95.21
63.74
32.00

h [
Time-years

[I TR IR TR TR R T I T TR R O T O TR - R G T S TR O TR N TR LN R O TR O TR % B L R R R R

Graphical user interfaces available

eg https://www.calculator.net/amortization-calculator.html

Amortization Calculator

Loan amount |$1,000

Monthly Pay: $32.27

B Frincipal
0 Interest

Loan term 3 years || 0 months

14%

Interest rate | 10 %

26%

|:| Optional: make extra payments
Total of 36 monthly payments $1,161.62
m Total interest $161.62

Amortization schedule
Annual Schedule Monthly Schedule

Year Interest Principal Ending Balance $1K

== Balance

1 $86.46 $300.74 5699.26 $750 { -
2 %5497 $33223 $367.02 £500
3 %2018 $367.02 $-0.00 £250
50
0 1 2 3
Year

by Calculator.net

https://www.calculator.net/amortization-calculator.html

Where we ended in webinar 1

Data and parameter input ----------"-""""""""""-"—"—"—"—"—"—————~——
A <- 1000

n yr <- 3

int yr <- 0.1

Intermediate calculations -----—-——="""-""--———————————————
n <- n yr * 12

i <= int yr / 12

emi <- (1 + i)"n / ((1L + 1)"n - 1) * i * A

Define amortisation function -----—-————————-""""-"--—--—-—-————
amortise one <- function(a, b) {a + a * 1 - emi}

apply it successively to the loan amount ---—-—--—--—--—--—-—-——-—
P <- purrr::accumulate(l: (n-1), amortise one, .1init = A)
P[1l:6] # print first few results

[1] 1000.0000 976.0661 951.9328 927.5984 903.0012 878.3196

Today: Putting R into production

e Build functions to reuse logic and abstract away complexity
e |terate over all data with functional programming approach
e Bundle functions into packages to share with others

e Expose functions into Shiny apps for non-programming use

e Expose functions into Web APIs for use by other apps

Functions

Abstracting complexity away

calc emi <- function(L, t, r) {
emi <- (1 +)"t / ((L + r)*t - 1) * r * L
emi

}

amort helper 1 <- function(x, y, r, emi val) {x + x * r - emi val}

amortise <- function (loan, term, rate) {
term <- term * 12 # turn it into months
rate <- rate / 12 # turn it to monthly effective rate

emli <- calc emi(L = loan, t = term, r = rate)

amortised loan <- purrr::accumulate (
.x = c(loan, rep(0, term - 1)), # c concatenates; rep repeats
.f = ~ amort helper i(x = .x, r = rate, emi val = emi)

)

amortised loan

Try function

amortise(loan = 1000, term = 3, rate = 0.1)

] 1000.00000 976.06615 951.93284 927.59843 903.06123 878.31955
] 853.37170 828.21594 802.85055 777.27379 751.48388 725.47906
] 699.25753 672.81749 646.15711 ©19.27457 592.16800 564.83555
] 537.27533 509.48543 481.46396 453.20897 424.71852 395.99066
] 367.02339 337.81473 308.36267 278.66517 248.72019 218.525677
] 188.07953 157.37968 126.42399 95.21033 63.73657 32.00052

Automating with functions

e makes your code easier to understand
e update code in one place
e avoid copy and paste

e casier to reuse work

To learn more about functions in R, you may start at the
Functions chapter from R for Data Science 2e by Wickham,
Cetinkaya-Rundel and Grolemund which is freely available
online

https://r4ds.hadley.nz/functions.html

lteration with
functionals

Create some data

z <— le3 # Number of customers (To Do: Find better name)
inforce <- tibble::tibble (

customer id = 1l:z,

loan amount = pmax (100, round(rnorm(n = z, mean = 1000, sd = 100))),
policy term = sample(x = 2:30, size = z, replace = TRUE),

interest rate = sample(x = seqg(8, 20, 0.25) / 100, size = z, replace = T)

)
inforce <- dplyr::bind rows (
tibble::tibble (

customer id = 0,

loan amount = 1000,

policy term = 3,

interest rate = 0.1),
inforce

)

readr::write csv(x = inforce, file = "data/client data.csv")

Create some data

A tibble: 1,001 x 4
customer id loan amount policy term interest rate

<dbl> <dbl> <dbl> <dbl>
1 0 1000 3 0.1
2 1 1018 22 0.155
3 2 956 13 0.172
4 3 1080 15 0.192
5 4 899 11 0.155
6 5 971 8 0.12
7 6 1241 21 0.135
8 7 1010 21 0.185
9 8 843 12 0.165
10 9 867 12 0.162

1 991 more rows

Functionals

- r]
ccl b

map (,) ::)
tcl
o rc]

For more information about functionals please see the
Iteration chapter from R for Data Science 2e

https://r4ds.hadley.nz/iteration

Functionals

Functionals

pmap(, f) I::>

Single record: Pick the first record

inforce |> slice (1)

A tibble: 1 x 4
customer id loan amount policy term interest rate
<dbl> <dbl> <dbl> <dbl>
1 0 1000 3 0.1

Single record: Apply pmap

inforce |>

dplyr::slice (1) |[> # select first record
dplyr: :mutate (# create a new column
amortised loan = pmap (# parallel mapping
.1l = 1list(..1 = loan amount, ..2 = policy term, ..3 = Interest rate
.f = ~ amortise(loan = ..1, term = ..2, rate = ..3)

)
)

A tibble: 1 x 5
customer id loan amount policy term interest rate amortised loan
<dbl> <dbl> <dbl> <dbl> <list>
1 0 1000 3 0.1 <dbl [36]>

Chapter 23 on Hierarchical data from R for Data Science talks
more about list-columns and unnesting

https://r4ds.hadley.nz/rectangling#list-columns
https://r4ds.hadley.nz/rectangling#unnesting

Single record: Unnest the list-column

inforce |>

dplyr::slice (1) |[> # select first record
dplyr: :mutate (# create a new column
amortised loan = purrr::pmap (# parallel mapping
.1 = 1list(..1 = loan amount, ..2 = policy term, ..3 = interest rate),
.f = ~ amortise(loan = ..1, term = ..2, rate = ..3) |>
tibble::enframe (name = "proj month", value = "principal bop")

)

) >

tidyr::unnest (amortised loan)

A tibble: 36 x 6
customer id loan amount policy term interest rate proj month principal bop

<dbl> <dbl> <dbl> <dbl> <int> <dbl>
1 0 1000 3 0.1 1 1000
2 0 1000 3 0.1 2 976.
3 0 1000 3 0.1 3 952.
4 0 1000 3 0.1 4 928.
5 0 1000 3 0.1 5 903.
6 0 1000 3 0.1 6 878.
7 0 1000 3 0.1 7 853.
8 0 1000 3 0.1 8 828.
9 0 1000 3 0.1 9 803.

Run all records

result <-
inforce |>

mutate (# create a new column
amortised loan = pmap (# parallel mapping
.1 = list(..1 = loan amount, ..2 = policy term, ..3 = interest rate
.f = ~ amortise(loan = ..1, term = ..2, rate = ..3) |>
enframe (name = "proj month", value = "principal bop")
)
) >

tidyr::unnest (amortised loan)

Review the result as table

A tibble: 192,036 x 6
customer id loan amount policy term interest rate proj month principal bop

<dbl> <dbl> <dbl> <dbl> <int> <dbl>

1 0 1000 3 0.1 1 1000
2 0 1000 3 0.1 2 976.
3 0 1000 3 0.1 3 952.
4 0 1000 3 0.1 4 928.
5 0 1000 3 0.1 5 903.
6 0 1000 3 0.1 6 878.
7 0 1000 3 0.1 7 853.
8 0 1000 3 0.1 8 828.
9 0 1000 3 0.1 9 803.
10 0 1000 3 0.1 10 177 .

1 192,026 more rows

Review sample records in a plot

—
no
w

1.25Kk -

1.00k -

0.75k -
0.50k -
0.25k -
1.00kK -
0.75k -
0.50k -
0.25k -
250 200 250

o
o
o
-
1

principal_bop
P
(¢}

0.00k -

200 250 100 150 200
proj_month

Packages

The rationale

R packages are a familiar concept for sharing code with other R
users.

In addition to sharing, there are other benefits that mean it can
be a good idea even if you don’t plan on sharing your code
widely.

These include ease of documentation and testing, and we will
demonstrate some handy tools for managing these elements
and others.

Packaging - getting started 1

A great place to start for anyone new to developing packages
in Ris the R Packages book freely available online .

We’ll use the devtools and usethis packages to help create
and develop our package.

usethis::create package ("amortisethis")

J Creating 'amortisethis/'+ Setting active project to '"/mnt/clustershare/home/séyw2g/excel to_r_emi workshop/amortisethis'v Creating "R/°W Writing 'DESCRIPTION'Package: amorti
sethis
Title: What the Package Does (One Line, Title Case)
Version: @.8.8.988@
Authors@R (parsed):
* First Last <first.lastpexample.com» [aut, cre] (YOUR-ORCID-ID)
Description: What the package does {ons paragraph).
License: “use_mit_license() , “use_gpl3_license()” or friends to
pick a license
Encoding: UTF-8
Roxygen: list(markdown = TRUE)
Roxygenhote: 7.2.3
' Writing 'MAMESPACE'+ Writing ‘amortisethis.Rproj’'+ Adding ‘“amortisethis\).Rproj$' to °.Rbuildignore's Adding '.Rproj.user® to '.gitignore's Adding '~\\.Rproj\\.user}' to
' .Rbuildignore’y Opening ‘/mnt/clustershare/home/s6yw2g/excel to_r_emi_workshop/amortisethis/"' in new RStudio sessions Setting active project to "<no active projects’
5

Packaging - getting started 2

In your new session you should see the following files

Files Plots Packages Help Viewer Presentation e [

@ | Folder | & Blank File » | & | Upload | @ Delete o Rename | 4 ~

mnt - clustershare . home - sbywZ2g » excel_to_r_emi_workshop - amortisethis K

A Mame Size Modified
)
¥ _gitignore 12 B Mar 15, 2023, 5:18 PM
_Rbuildignore 38 B Mar 15, 2023, 5:18 PM
E| amortisethis Rproj 414 B Mar 15, 2023, 5:18 PM
% DESCRIPTION 437 B Mar 15, 2023, 518 FM
NAMESFACE 46 B Mar 15, 2023, 518 FM

E

Packaging - metadata 1

The DESCRIPTION file contains fundamental package info -
some of which we’ve populated here

£+ DESCRIPTION

A\

Package: amortisethis
Title: Calculate amortisation schedule for loans
Version: @.8.8.9688
AuthorsaR:

person("Tom", "Bowling", , "Tom.Bolwing@SwissRe.com", role = c{"aut")),

person{ "Georgios”, "Bakoloukas", , "Georgios Bakoloukas@gswissre.com”, role = c({"aut”, "cre"))
Description: Calculates amortisation schedules for loans based on the loan amount, the interest rate and the loan term.
License: "use_mit_license() , "use_gpl3 license() or friends to pick a

license
18 Encoding: UTF-8
11 Roxygen: list{markdown = TRUE)
12 Roxygenhote: 7.2.3

(U L (e R Wy [N R W

Packaging - metadata 2

The License field details how the package can be shared. We
can use a usethis helper function to populate this for us

b use:kiﬁ?:LSE_pﬂcpPietaﬂy_License{”SuiSSRe“}
+ Setting License field in DESCRIPTION to 'file LICENSE'
o _Nr‘it ing 'LICENSE'

which creates this file

£+ DESCRIPTION LICEMSE

s
1 fopyright 2823 SwissRe. All rights reserved.
2

Packaging - metadata 3

The License field now looks like this

£+ DESCRIPTION LICEMSE

A

Package: amortisethis
Title: Calculate amortisation schedule for loans
Version: @.8.8.9088
AuthorsiR:

person(”Tom", "Bowling", , "Tom.Bolwing@SwissRe.com", role = c("aut™)),

person(“Georgios™, "Bakoloukas", , "Georgios_Bakoloukas@swissre.com", role = c("aut”, "cre"))
Description: Calculates amortisation schedules for loans based on the loan amount, the interest rate and the loan term.
License: file LICENSE
Encoding: UTF-3
18 Roxygen: list({markdown = TRUE)
11 RoxygenMote: 7.2.3

(L T o N s W Y O W S T

Packaging - metadata 4

If we want to use any other packages inside our package, we
must import them. Again, usethis has a helper function

> usethis::use package("purrr™)

+ Adding “purrr’ to Imports field in DESCRIPTION
*» Refer to functions with “purrr::fun()”

|

which adds this line to the DESCRIPTION file

£+ DESCRIPTIOM LICENSE

1 Package: amortisethis

2 Title: Calculate amortisation schedule for loans

3 \ersion: @.8.8.9888

4 Authors@R:

E person{"Tom", "Bowling", , "Tom.Bolwing@SwissRe.com", role = c{"aut")),

6 person(“Georgios™, "Bakoloukas", , "Georgios Bakoloukas@swissre.com", role = c("aut", "cre"})
7 Description: Calculates amortisation schedules for loans based on the loan amount, the interest rate and the loan term.
8 License: file LICENSE

9 Encoding: UTF-8

18 Roxygen: list{markdown = TRUE)

11 RoxygenNote: 7.2.3

12 Imports:

13 purrr

[
i

Packaging - where to store your
functions

In an R package, functions are stored in the R/ folder. We can
again leverage usethis

> usa:kiz::LSE_P{"calc_emi”}
» Modify 'R/calc_emi.R’
= C3ll "wse test()” to create a matching test file

which creates and opens a blank file, in to which we can enter
our function

@ calc_emi.R

Source on Save | G4 -
~ calc_ emi <- function(L, t, r) {
emi <- (1 +r)* /({1 +r)"t -1) *r*L

return(ami)

[W g I SR W Y A
3

Packaging - development workflow

Once all functions are added, we can load the package by
running devtools::load all().

Now we can interactively test and use our new functions.

We can check on the status of our package using
devtools: :check()

This forms our general developer workflow:

1. Add/change some code
2. Load the changes and do some basic testing

3. Run devtools check to see that the package is still in good
shape.

Documentation - the rationale

When we write functions, we generally expect them to be used
again in the future, either by ourselves or by others

Well documented functions are easier to pick up and use than
poorly documented ones

Good documentation reduces the amount of questions you
receive as the author of the function, and allows users to be

more efficient as they spend less time working out how to use
it

Documentation - roxygen headers 1

R uses the roxygen framework, which enables you to
document your functions in what are called headers. These
take the form of metadata stored above the function
definition. They can be inserted by pressing
ctrl+shift+alt+r with your cursorinside the function

Documentation - roxygen headers 2

We fill in the details with as much info as we can/think will be
helpful for other users

@) calc_emi.R” | DESCRIPTION @ amortise.R
; _ Source on Save -'\ P

1 #' Calculate EMI

2 #

3 #' Calculate the equated monthly installment (EMI) for a loan
4 #' given the loan value, term and interest rate.

5 #

6 #

7 #' @param L {numeric} - the loan value

8 #' @param t {integer} - the loan term in months

9 #' @param r {double} - fhe interest rate as a decimal - e.g. 8.85
18 #'

11 #' @return a numeric vector of length 1

12 #' (@export

13 #°

14 #' (gexamples

15 #' emi(L = 1888, t = 12, r = 8.85)

16 ~ calc emi <- function(L, t, r) {

17 emi <- (1 +r)* /7 {((L+r)*t-1) *r *L
18 return{emi)

19+ 1

28

Documentation - rendering docs

To render the docs we’ll use devtools: :document()

» devtools::document()
i Updating amortisethis documentation
i Loading amortisethis

Writing calc emi.Rd

Documentation - viewing docs

Users can access the s s o s -

calc_emi.Rd = | Find in Topic

help for functions in our e

Calculate EMI

package just like any

Calculate the eguated monthly installment (EMI) for a loan given the loan value, term and interest rate.

other, either with

?calc emi Arguments
L numeric - the loan value

tinteger - the loan term in months

O r by p reSS i n g F l W i t h r double - the interest rate as a decimal - e.g. 0.05

Value

the function name
highlighted, or by "

searching in the help
pane

Testing - the rationale

Unit testing is a way of confirming that all functions are
working as expected

Automating these tests reduces the amount of time that a
developer spends checking outputs when they make changes
to code

Running devtools: :check() runs any tests in your package,
so embedding that step in your developer workflow means
you’re more likely to catch any bugs before they get to your
end users

Testing - testthat framework 1

One of the most commonly used testing frameworks in R is

testthat. We can use this framework in our package with
usethis

» usethis::use testthat()
+ Setting active project to "/mnt/clustershare/home/seyw2g/excel to r_emi_workshop/amortisethis’
v Adding "testthat' to Suggests field in DESCRIPTION

+f Setting Config/testthat/edition field in DESCRIPTION to '2°
+f Creating 'tests/testthat/'

W Writing 'tests/testthat.R’
+ C3l1]1 "wse test()” to initialize a basic test file and open it for aditing.

which creates the test folder in our package

Testing - testthat framework 2

The testthat.R script contains set-up code that is run before the
tests, for now it is pretty basic

tc_emi.R o testthat-Fl o 'test—calc emi.k

Source on Save | L4

TP15 file is part of the standard setup for testthat.
It is recommended that you do not modify it.

Where should you do additional test configuration?
Learn more about the roles of a”iDUS files in:

" 2 i —
|' - i

library(testthat)
library(amortisethis)

test_check("amortisethis")

Testing - a basic test 1

To set up our first test, again we turn to usethis

» usethis::use test{"calc_emi")
+ Writing "tests/testthat/test-calc emi.R'
» Modify ‘'tests/testthat/test-calc_emi.R’

which creates a dummy test for us in the tests/testthat folder

@] calc_emi.R @) testthat R @ test-calc_emi.R
= ! f’ -
1- test that({"multiplication works",
2 expect equal(2 * 2, 4)
3« 1)
|

Testing - a basic test 2

We might test such things as the type of the output, the size of
the output, and the value.

@ calc_emi.R @ testthat R @ test-calc_emi.R

= test _that({"multiplication works", {
result <- calc emi(l18€8, 12, &.85)

1

2

3

4

5 expect equal(is.numeric(result), TRUE)
6 aexpect_length(result, 1)

7 expect_equal(result, 112.8254)

8 |
g9-1)
1@

we can execute our tests using

> devtools::test()

i Testing amortisethis

J | FWS 0K | Context
v 3 | calc_emi

= Results
Duration: @.2 s

[IFJ'J.IL @ | WARN @ | SKIP @ | PASS 3]
"

Testing - a testing checklist

When first starting out, it can be hard to know what to test.

A basic checklist would cover

e expected inputs -> expected outputs

e unexpected inputs -> expected error handling

Testing - defensive programming 1

The second item on our testing checklist leads us to defensive
programming

Consider the following, are either of them desirable

> calc_emi("$1886™, 12, &.85)
Error in (1 + r)E/((1 + P)E - 1) Fop * L
- eric argument to binary operator

> calc_emi(1@@@, -12, 8.85)
[1] -62.82541

Defensive programming enables us to mitigate for these sorts
of situations

Testing - defensive programming 2

So we might do something like this

#' Calculate EMI

1
#' Calculate the eguated monthly installment (EMI) for a loan
#' given the loan value, term and interest rate.

#1

#1

#' @param L {numeric} - the loan value

#' @param t {integer} - the loan term in months

#' @param r {double} - the interest rate &z & decimgl - e.g. @9.85
#1

#' @return a8 numeric vector of length 1

#' @export

1
#' @examples
#' emi(L = 1@ea, t = 12, r = @.85)

- calc_emi <- functioni{l, t, r)

if ('is.numeric(L} | L
if (lis.numerici(t) | t
if ('is.numeric(r} | r

stop("L must be numeric and positiwve")

i

|
1 stop{"t must be numeric and positiwve™)
|

o

stop("r must be numeric and positive")

)
<
)

[e e]

if (r »= 1) warning("r should be a decimal representation e.g. for 5% r should be .85 - a value of 1 relates to a rate of 188%")

- if (t ¥% 1 !F ay {
warning{"t must be & whole number, t will be rounded to the nearest wvalue")
t <- @s.integer{t)

= 7

emi <- (L+r)*t/ ((1+r)t-1) *r =L
return(emi)

Testing - defensive programming 3

which would then return the following in practice

calc_emi("%l@@", 12, 8.085)
rror in calc_emi{™$1@@", 12, 8.8%) : L must be numeric and positive
calc_ emi(l@@d, 12, 5)
[1] Saa
Warning message:
In calc_emii{l@@, 12, 5) :
r should be & decimal representation e.g. for 5% r should be .85 - & value of 1 relates to a rate of 190%

WO =

Testing - defensive programming

Our tests for the unexpected inputs could look like this

-

= test_that("calc_emi works", {
result <- calc_emi(1888, 12, @.@5)

expect_equal(is.numeric{result), TRUE)
expect_lengthiresult, 1)
expect_eguallresult, 112.32541)

expect_error(calc_emi("%1008", 12, ©.85%), 'L must be numeric and positive")

expect_error(calc_emi(-1@8&, 12, @.85), 'L must be numeric and positive')

expect_error(calc_emi(l@@@, "12 months", 8.8%), 't must be numeric and positive')

expect_error{calc_emi(leed, -12, @.85), "t must be numeric and positive')

expect_warning(calc_emi{le@@, 12.3, 8.85), 't must be & whole number, t will be rounded to the nearest wvalue')

expect_error(calc_emi(l@ea, 12, "5%"), "r must be numeric and positive')

expect_error(calc_emi(l@@&, 12, -5), 'r must be numeric and positive’)

expect_warning(calc_emi{1888, 12, 5), 'r should be & decimal representation =.g. for 5% r should be 8.85 - & value of 1 relates to & rate of 188%')

" |~. y

Testing - coverage

Test coverage looks at what % of lines of our code are run as
part of our unit tests

The R package covr provides a nice way to look at this

» covr::package_coversgs()
amortisethis Coverage: 5&8.25%
R/amortise.R: ©.00%
Ricalc_emi.R: 188.28%

Sharing packages within our
organisation

To add our package to our designated package manager (eg an
internal to the organisation Posit Package Manager
installation), we must build our package and upload it to our
server.

=

Build Binary Package

Document Ctri+5Shifi+

% Configure Build Tools...

Web apps (Shiny)

Sharing: Web apps

If we wanted to share the calculation with a user who had no
familiarity with R, we could use R’s shiny framework to build a
simple web app

Sharing: Web apps - full app.R file

i Define UT fo
ui <~ fluidPage

srtisation A

sidebarPanel(
fumericTnput

edule

red to draw a hist

output

ction(ing

result <- reactivevaluees()

observeEvent (Inputfcalc

nan_val,

balance <- amortisethis:::amortis

ut$loan_term, inputSrate) - Enterest

resultischedule <- loan_term,

balance,
est,
cipal
dpl balance, n = 1, default = @)
outputResults_plot <- renderPlet
reg(resultsschedule
resultischedule |»
[ount™) »

names_te = “type”, values_to

jatadtype)) +
, sefolors: :se_blue_sky, srfolors::sr_lake)) +

.datasameunt, colo
cfsriolors: s bougainville

; Ltitle "Amortization Schedule”

outputffesults_table <- renderTable(]
reg(result$schedule
resultischedule

SErVEr = SErver

Sharing: Web apps - Ul code

Define UI for application
ui «<- fluidPage(

titlePanel({"Basic Amortisation App™),

Sidebar with inputs
sidebarLayout|
sidebarPanel(
numericInput{“loan_val",
"Loan Yalue:",
value = 1884,
min = 1
.-I ¥
numericInput{"loan_term",
"Loan Term:",
value = 12,
min = 1
)
numericInput{“rate”,
"Interest Rate:",
value = 8.45,
min = @
.-I ¥
actionButton{"calc",
"Calculate™)
¥
Show a plot of the generated schedulg|
mainPanel(
plotOutput{“Results plot™),
tableQutput("Results_table™)
A
A

Sharing: Web apps - Server code

Define server logic reguired to draw a histogram
server <- function{input, output) {

result <- reactiveValues()

observeEvent({inputicalc, {

input%loan_val,
inputfloan_term,
inputfrate)

balance <- amortisethis:::amortise(loan
term

rate

interest <- inputirate * balance
principal <- amortisethis::calc_emi(input%loan_val, inputfloan_term, inputirate) - interest

resultischedule <- data.frame{period = l:inputfloan_term,
cpening_balance = balance,
interest = interest,
principal = principal,
closing_balance = dplyr::lead(balance, n = 1, default = @)}

1}
outputfResults_plot <- renderPloti{
req(resultizchedule)
browser()
resultischedules |:
pivet_longer{!pericd, names_to = "type", values_to = "amount™) |:
filter{type != "opening_balance") |»
goplot(aes(x = .datafperiod, vy = .datafamount, color = .dataftype)) +
scale_color_manual(wvalues = c(srColors::sr_bougeinvillea, srColors::sr_blue_sky, srlolors::sr_lake)) +
geom_line() +
labs(x = "Term", ¥ = "Amount”, title = "Amortisation Schedule™)
1}

outputfResults_table <- renderTable(!
reqlresultischedule)
resultischedules
1}
y

Sharing: Web apps - Run locally

Basic Amortisation App

Amortisation Schedule
Loan Value:

nnn
1000

Loan Term: 750

12

Interest Rate:

Amount

0.0

(3]

Calculate

Term

period opening_balance interest principal closing_balance

1 1000.00 50.00 62.83 937.17
2 937.17 46.86 65.97 871.21
3 871.21 4356 69.27 801.94
4 801.94 4010 72.73 729.21
5 72921 36.46 76.36 652.85
6 6552.55 3264 80.18 57267
7 57267 2863 84.19 488.47
8 488 .47 2442 88.40 400.07
9 400.07 20.00 92.82 307.25
10 307.25 15.36 97.46 209.79
" 209.79 10.49 102.34 107.45
12 107.45 537 107.45 0.00

Sharing: Web apps - Publish
application

Sharing: Web apps - Deployed
Application

Link for demonstration only: not available outside Swiss Re
https://rstudioconnect.atelier.swissre.com/amortise_app_test/

https://rstudioconnect.atelier.swissre.com/amortise_app_test/

Web APIs

Sharing: Web API

If we want other systems to interact with our functions, we can
use R’s plumber framework to deploy our functions as an API.

meetup-mar-2023.gmd @ plumber.R @ app.R
W
1 #
2 # This is a Plumber API. You can run the API by clicking
3 # the "Run API' button above.
4 #
5 # Find out more about building APIs with Plumber here:
6 #
P https:/fwww. rplumber.io/
g
9

1@ library(plumber)
11 library(amortisethis)

13 #* @apiTitle Amortisation API

14 #* @apiDescription Returns the amortisation schedule based on loan amount, term and interest rate.
16 #* Calculate the gmortisation value

17 #* gparam loan The loan wvalue

18 E;“ @param term The loan term

19 #* @param rate The interest rate

28 #* @get /amoriise

21~ functioniloan, term, rate) {

22

23 amortisethis:::amortise(as.numeric(loan),
24 az.numeric(term),
25 az.numeric(rate))
26« }

27

Sharing: Web API

We can test locally by hitting run API, it generates a test
interface for us

@ Swagger hitps://positworkbench.int.swissre.com/s/b3345b3a8254126dc100a/p/0b0ebb66/ Explore
SMARTREAR

Amortisation AP| 2

hitps:

bench.int. swissre.com/s/b334503a8254126dc

penapijson

Returns the amortisation schedule based on loan amount, term and interest rate.

Servers
https:/ipositworkbench.int.swissre.com/s/b3345b3a8254126dc100a/p/0b0ebb66/ ~

default ~

J/amortise Calculate the amortisation value

Parameters ‘ Try it out
Name Description

loan °

s The loan value

(query)

loan - The loan value

term * reauired
string The loan term
(query)

term - The loan term
rate = r=auss
string The interest rate
(query)

rate - The interest rate

Sharing: Web API

If we fill in the values and hit execute, we can see the output

Responses

Curl

curl -X GET "hiips://positworkbench.int.swissre.com/s/b3345b3a8254126dc108a/p/ebeebbes/amortise?loan-1008kterm-128rate-6.85" -H
"accept: *f*"

Request URL

hitps://positworkbench. int. swissm /b3345b3a8254126d c188a/p/absebbss/ amortise * loal

Server response

Code Details.

200
Response body

Response headers

connection: Keep-Alive
content-length: 1e1
content-type: application/json

date: Fril7 Mar 2823 14:23:25 GMT
keep-alive: timeout=Smax=186
Server: nginx
x-content-type-options: mosniff

Sharing: Web API

As with the shiny app, we can publish our APl to Rstudio
Connect

Sharing: Web API

Once the content is published we can edit the access settings

< O fnl (%] https://rstudioconnect.atelier.swissre.com;/ 013021-96a1-44 A A 3 S z
Posit Workbench Si... RStudic Sign In I:J Work items - Boards D Atelier Analytics W...] China Workbench ﬂ ascent-timesheet-s... O GitHub - rstudio/co... D SelectorGadget D https:/fupload.ateli...
Content / amortise_api

@ Swagger https-//rstudicconnect.atelier.swissre.com/amortise_api_test/openapijson i

Sharing settings

mortlsation API o ' Anyone - ne login required

hitps:/irs All users - login required

- Specific users or groups
Returns the amortisation schedule based on loan amount. ferm and interest rate.

Q s -

Servers

Who can view or change this API
[https:/irstudioconnect.atelier.swissre.com/amortise_api_test! ~

default v

Who runs this content on the server

Jamortise Calculate the amortisation value

ET / RStudio Connect added this endpaint to redirect to the AP| does by default. Onee you define a base handler (i.e.: "GET /). RStudio Connect will stop adding this redirector.

Content URL [

famartise_api_ts

https:{rstudicconnect.atelier.swissre.com/ame. ..

Sharing: Web API

We can test the API from the terminal (i.e. not using R) like so

Console Terminal Deploy Background Jobs Workbench Jobs
Terminal 1 - sEyw2g&scl000111696: /mnt/clustershare/home/sEyw2g/excel_to_r_emi_workshop
: % curl -X GET “https://rstudicconnect.atelier.swissre.com/amortise api_test/amortise?losn=leeelterm=128rate=0.85" -H “accept: */*"
[1eee,937.1746,871.2679,801.9429,729,2146,652,.85,572 . 667,488 .475,488 .. 8733, 387 . 2516, 289, 7887, 167 ,.4528] H % I

Sharing: Web API

Link for demonstration only: not available outside Swiss Re
https://rstudioconnect.atelier.swissre.com/amortise_api_test/

https://rstudioconnect.atelier.swissre.com/amortise_api_test/

Summary

In the first session we showed how we can take a process from
Excel, move itin to R.

Today we have shown how we can

e structure our code as functions to abstract complexity away

e iterate using functionals to avoid writing explicit loops
e Package our code to improve robustness of our solution

e Demonstrated further ways we may productionalise our
work via Web apps and Web APIs

Join the R Consortium

R *consortium

R Consortium Impact

e R Consortium Community Grants and RS Medicine 2023 . .
Sponsorships Over USD $1.4 Million] Organizations Can
e Organize large scale collaborative projects Become a Member

o R Validation Hub (] I
o R-Ladies R “:‘R. Today!
o Diversity and Inclusion Working Group

e Co-host multidisciplinary data science forums

o Stanford Data Institute =
e Direct support for key R events

o R/Medicine, R/Pharma, useR!, LatinR, more
e Direct support for R User Groups

Email Joseph Rickert at
director@r-consortium.org

to set up first call

