
R/Insurance Webinars
Jan 2024

For the R Consortium’s R/Adoption Series

Welcome

Welcome
1. From Excel to programming in R

2. From programming in R to putting R into production
(today’s topic)

3. R performance culture

4. High performance programming in R

Delivered on behalf of the R Consortium by Georgios
Bakoloukas and Benedikt Schamberger, Actuarial Control,
Group Risk Management, Swiss Re

Background
Swiss Re internal R community sponsored by our Group
Chief Actuary Philip Long (Atelier programme)

2000+ community with 500+ regular coders who also
support each other

The case we see today appeared in our Microso� Teams
community channel by an actuary in a high-growth market

Views expressed belong solely to the speakers and not
necessarily to the speaker’s employer

Running example for webinars 1 & 2
Insurer covers the remaining balance of loans in case of
death/disability of the borrower

Requires a quote for a portfolio of ca. 300,000 policies

Has provided information on a) loan amount b) loan
duration and c) interest rate for each policy

Problem: The actuary needs to calculate the sum-insured
profile for each policy as it amortises

A solution in Excel and a potential solution in R

Putting the solution ‘into production’ with R

A credit life insurance quote

Graphical user interfaces available
eg https://www.calculator.net/amortization-calculator.html

https://www.calculator.net/amortization-calculator.html

Where we ended in webinar 1
Data and parameter input ---------------------------------1
A <- 10002
n_yr <- 33
int_yr <- 0.14
Intermediate calculations --------------------------------5
n <- n_yr * 126
i <- int_yr / 127
emi <- (1 + i)^n / ((1 + i)^n - 1) * i * A8
Define amortisation function -----------------------------9
amortise_one <- function(a, b) {a + a * i - emi}10
apply it successively to the loan amount -----------------11
P <- purrr::accumulate(1:(n-1), amortise_one, .init = A)12
P[1:6] # print first few results13

[1] 1000.0000 976.0661 951.9328 927.5984 903.0612 878.3196

Today: Putting R into production
Build functions to reuse logic and abstract away complexity

Iterate over all data with functional programming approach

Bundle functions into packages to share with others

Expose functions into Shiny apps for non-programming use

Expose functions into Web APIs for use by other apps

Functions

Abstracting complexity away
calc_emi <- function(L, t, r) {1
 emi <- (1 + r)^t / ((1 + r)^t - 1) * r * L2
 emi3
}4
amort_helper_i <- function(x, y, r, emi_val) {x + x * r - emi_val}5

6
amortise <- function(loan, term, rate) {7
 term <- term * 12 # turn it into months8
 rate <- rate / 12 # turn it to monthly effective rate9
 emi <- calc_emi(L = loan, t = term, r = rate)10
 amortised_loan <- purrr::accumulate(11
 .x = c(loan, rep(0, term - 1)), # c concatenates; rep repeats12
 .f = ~ amort_helper_i(x = .x, r = rate, emi_val = emi)13
)14
 amortised_loan15
}16

Try function
amortise(loan = 1000, term = 3, rate = 0.1)1

 [1] 1000.00000 976.06615 951.93284 927.59843 903.06123 878.31955
 [7] 853.37170 828.21594 802.85055 777.27379 751.48388 725.47906
[13] 699.25753 672.81749 646.15711 619.27457 592.16800 564.83555
[19] 537.27533 509.48543 481.46396 453.20897 424.71852 395.99066
[25] 367.02339 337.81473 308.36267 278.66517 248.72019 218.52567
[31] 188.07953 157.37968 126.42399 95.21033 63.73657 32.00052

Automating with functions
makes your code easier to understand

update code in one place

avoid copy and paste

easier to reuse work

To learn more about functions in R, you may start at the
Functions chapter from by Wickham,
Cetinkaya-Rundel and Grolemund which is freely available
online

R for Data Science 2e

https://r4ds.hadley.nz/functions.html

Iteration with
functionals

Create some data
z <- 1e3 # Number of customers (To Do: Find better name)1
inforce <- tibble::tibble(2
 customer_id = 1:z,3
 loan_amount = pmax(100, round(rnorm(n = z, mean = 1000, sd = 100))),4
 policy_term = sample(x = 2:30, size = z, replace = TRUE),5
 interest_rate = sample(x = seq(8, 20, 0.25) / 100, size = z, replace = T)6
)7
inforce <- dplyr::bind_rows(8
 tibble::tibble(9
 customer_id = 0, 10
 loan_amount = 1000, 11
 policy_term = 3, 12
 interest_rate = 0.1),13
 inforce14
)15
readr::write_csv(x = inforce, file = "data/client_data.csv")16

Create some data
A tibble: 1,001 × 4
 customer_id loan_amount policy_term interest_rate
 <dbl> <dbl> <dbl> <dbl>
 1 0 1000 3 0.1
 2 1 1018 22 0.155
 3 2 956 13 0.172
 4 3 1080 15 0.192
 5 4 899 11 0.155
 6 5 971 8 0.12
 7 6 1241 21 0.135
 8 7 1010 21 0.185
 9 8 843 12 0.165
10 9 867 12 0.162
ℹ 991 more rows

Functionals

For more information about functionals please see the
Iteration chapter from R for Data Science 2e

https://r4ds.hadley.nz/iteration

Functionals

Functionals

Single record: Pick the first record
inforce |> slice(1)1

A tibble: 1 × 4
 customer_id loan_amount policy_term interest_rate
 <dbl> <dbl> <dbl> <dbl>
1 0 1000 3 0.1

Single record: Apply pmap

Chapter 23 on Hierarchical data from R for Data Science talks
more about and

inforce |> 1
 dplyr::slice(1) |> # select first record2
 dplyr::mutate(# create a new column3
 amortised_loan = pmap(# parallel mapping 4
 .l = list(..1 = loan_amount, ..2 = policy_term, ..3 = interest_rate5
 .f = ~ amortise(loan = ..1, term = ..2, rate = ..3)6
)7
)8

A tibble: 1 × 5
 customer_id loan_amount policy_term interest_rate amortised_loan
 <dbl> <dbl> <dbl> <dbl> <list>
1 0 1000 3 0.1 <dbl [36]>

list-columns unnesting

https://r4ds.hadley.nz/rectangling#list-columns
https://r4ds.hadley.nz/rectangling#unnesting

Single record: Unnest the list-column
inforce |> 1
 dplyr::slice(1) |> # select first record2
 dplyr::mutate(# create a new column3
 amortised_loan = purrr::pmap(# parallel mapping 4
 .l = list(..1 = loan_amount, ..2 = policy_term, ..3 = interest_rate),5
 .f = ~ amortise(loan = ..1, term = ..2, rate = ..3) |> 6
 tibble::enframe(name = "proj_month", value = "principal_bop")7
)8
) |> 9
 tidyr::unnest(amortised_loan)10

A tibble: 36 × 6
 customer_id loan_amount policy_term interest_rate proj_month principal_bop
 <dbl> <dbl> <dbl> <dbl> <int> <dbl>
 1 0 1000 3 0.1 1 1000
 2 0 1000 3 0.1 2 976.
 3 0 1000 3 0.1 3 952.
 4 0 1000 3 0.1 4 928.
 5 0 1000 3 0.1 5 903.
 6 0 1000 3 0.1 6 878.
 7 0 1000 3 0.1 7 853.
 8 0 1000 3 0.1 8 828.
 9 0 1000 3 0.1 9 803.

Run all records
result <-1
 inforce |> 2
 mutate(# create a new column3
 amortised_loan = pmap(# parallel mapping 4
 .l = list(..1 = loan_amount, ..2 = policy_term, ..3 = interest_rate5
 .f = ~ amortise(loan = ..1, term = ..2, rate = ..3) |> 6
 enframe(name = "proj_month", value = "principal_bop")7
)8
) |> 9
 tidyr::unnest(amortised_loan)10

Review the result as table
A tibble: 192,036 × 6
 customer_id loan_amount policy_term interest_rate proj_month principal_bop
 <dbl> <dbl> <dbl> <dbl> <int> <dbl>
 1 0 1000 3 0.1 1 1000
 2 0 1000 3 0.1 2 976.
 3 0 1000 3 0.1 3 952.
 4 0 1000 3 0.1 4 928.
 5 0 1000 3 0.1 5 903.
 6 0 1000 3 0.1 6 878.
 7 0 1000 3 0.1 7 853.
 8 0 1000 3 0.1 8 828.
 9 0 1000 3 0.1 9 803.
10 0 1000 3 0.1 10 777.
ℹ 192,026 more rows

Review sample records in a plot

Packages

The rationale
R packages are a familiar concept for sharing code with other R
users.

In addition to sharing, there are other benefits that mean it can
be a good idea even if you don’t plan on sharing your code
widely.

These include ease of documentation and testing, and we will
demonstrate some handy tools for managing these elements
and others.

Packaging - getting started 1
A great place to start for anyone new to developing packages
in R is the R Packages book freely available online .

We’ll use the devtools and usethis packages to help create
and develop our package.

usethis::create_package("amortisethis")1

Packaging - getting started 2
In your new session you should see the following files

Packaging - metadata 1
The DESCRIPTION file contains fundamental package info -
some of which we’ve populated here

Packaging - metadata 2
The License field details how the package can be shared. We
can use a usethis helper function to populate this for us

which creates this file

Packaging - metadata 3
The License field now looks like this

Packaging - metadata 4
If we want to use any other packages inside our package, we
must import them. Again, usethis has a helper function

which adds this line to the DESCRIPTION file

Packaging - where to store your
functions
In an R package, functions are stored in the R/ folder. We can
again leverage usethis

which creates and opens a blank file, in to which we can enter
our function

Packaging - development workflow
Once all functions are added, we can load the package by
running devtools::load_all().

Now we can interactively test and use our new functions.

We can check on the status of our package using
devtools::check()

This forms our general developer workflow:

1. Add/change some code

2. Load the changes and do some basic testing

3. Run devtools check to see that the package is still in good
shape.

Documentation - the rationale
When we write functions, we generally expect them to be used
again in the future, either by ourselves or by others

Well documented functions are easier to pick up and use than
poorly documented ones

Good documentation reduces the amount of questions you
receive as the author of the function, and allows users to be
more efficient as they spend less time working out how to use
it

Documentation - roxygen headers 1
R uses the roxygen framework, which enables you to
document your functions in what are called headers. These
take the form of metadata stored above the function
definition. They can be inserted by pressing
ctrl+shift+alt+r with your cursor inside the function

Documentation - roxygen headers 2
We fill in the details with as much info as we can/think will be
helpful for other users

Documentation - rendering docs
To render the docs we’ll use devtools::document()

Documentation - viewing docs
Users can access the
help for functions in our
package just like any
other, either with

or by pressing F1 with
the function name
highlighted, or by
searching in the help
pane

?calc_emi1

Testing - the rationale
Unit testing is a way of confirming that all functions are
working as expected

Automating these tests reduces the amount of time that a
developer spends checking outputs when they make changes
to code

Running devtools::check() runs any tests in your package,
so embedding that step in your developer workflow means
you’re more likely to catch any bugs before they get to your
end users

Testing - testthat framework 1
One of the most commonly used testing frameworks in R is
testthat. We can use this framework in our package with
usethis

which creates the test folder in our package

Testing - testthat framework 2
The testthat.R script contains set-up code that is run before the
tests, for now it is pretty basic

Testing - a basic test 1
To set up our first test, again we turn to usethis

which creates a dummy test for us in the tests/testthat folder

Testing - a basic test 2
We might test such things as the type of the output, the size of
the output, and the value.

we can execute our tests using

Testing - a testing checklist
When first starting out, it can be hard to know what to test.

A basic checklist would cover

expected inputs -> expected outputs

unexpected inputs -> expected error handling

Testing - defensive programming 1
The second item on our testing checklist leads us to defensive
programming

Consider the following, are either of them desirable

Defensive programming enables us to mitigate for these sorts
of situations

Testing - defensive programming 2
So we might do something like this

Testing - defensive programming 3
which would then return the following in practice

Testing - defensive programming 4
Our tests for the unexpected inputs could look like this

Testing - coverage
Test coverage looks at what % of lines of our code are run as
part of our unit tests

The R package covr provides a nice way to look at this

Sharing packages within our
organisation
To add our package to our designated package manager (eg an
internal to the organisation Posit Package Manager
installation), we must build our package and upload it to our
server.

Web apps (Shiny)

Sharing: Web apps
If we wanted to share the calculation with a user who had no
familiarity with R, we could use R’s shiny framework to build a
simple web app

Sharing: Web apps - full app.R file

Sharing: Web apps - UI code

Sharing: Web apps - Server code

Sharing: Web apps - Run locally

Sharing: Web apps - Publish
application

Sharing: Web apps - Deployed
Application
Link for demonstration only: not available outside Swiss Re
https://rstudioconnect.atelier.swissre.com/amortise_app_test/

https://rstudioconnect.atelier.swissre.com/amortise_app_test/

Web APIs

Sharing: Web API
If we want other systems to interact with our functions, we can
use R’s plumber framework to deploy our functions as an API.

Sharing: Web API
We can test locally by hitting run API, it generates a test
interface for us

Sharing: Web API
If we fill in the values and hit execute, we can see the output

Sharing: Web API
As with the shiny app, we can publish our API to Rstudio
Connect

Sharing: Web API
Once the content is published we can edit the access settings

Sharing: Web API
We can test the API from the terminal (i.e. not using R) like so

Sharing: Web API
Link for demonstration only: not available outside Swiss Re
https://rstudioconnect.atelier.swissre.com/amortise_api_test/

https://rstudioconnect.atelier.swissre.com/amortise_api_test/

Summary
In the first session we showed how we can take a process from
Excel, move it in to R.

Today we have shown how we can

structure our code as functions to abstract complexity away

iterate using functionals to avoid writing explicit loops

Package our code to improve robustness of our solution

Demonstrated further ways we may productionalise our
work via Web apps and Web APIs

Join the R Consortium

