
R/Insurance Webinars
Jan 2024

For the R Consortium’s R/Adoption Series

Welcome
1. From Excel to programming in R (today’s topic)

2. From programming in R to putting R into production

3. R performance culture

4. High performance programming in R

Delivered on behalf of the R Consortium by Georgios
Bakoloukas and Benedikt Schamberger, Actuarial Control,
Group Risk Management, Swiss Re

Background
Swiss Re internal R community sponsored by our Group
Chief Actuary Philip Long (Atelier programme)

2000+ community with 500+ regular coders who also
support each other

The case we see today appeared in our Microso� Teams
community channel by an actuary in a high-growth market

Views expressed belong solely to the speakers and not
necessarily to the speaker’s employer

Running example for webinars 1 & 2
Insurer covers the remaining balance of loans in case of
death/disability of the borrower

Requires a quote for a portfolio of caa. 300,000 policies

Has provided information on a) loan amount b) loan
duration and c) interest rate for each policy

Problem: The actuary needs to calculate the sum-insured
profile for each policy as it amortises

A solution in Excel and a potential solution in R

A credit life insurance quote

Graphical user interfaces available
eg https://www.calculator.net/amortization-calculator.html

https://www.calculator.net/amortization-calculator.html

How to calculate the Equivalent
Monthly Installment (EMI)

For the derivation and an intuitive understanding see

EMI = × i × L
(1 + i)n

(1 + i − 1)n

https://math.stackexchange.com/questions/279844/how-the-
formula-for-emi-is-derived

https://math.stackexchange.com/questions/279844/how-the-formula-for-emi-is-derived
https://math.stackexchange.com/questions/279844/how-the-formula-for-emi-is-derived

Calculating EMI in Excel and R is
similar

Data and parameter input1
A <- 10002
n_yr <- 33
int_yr <- 0.14

5
Intermediate calculation6
n <- n_yr * 127
i <- int_yr / 128

9
emi <- (1 + i)^n / ((1 + i)^n - 1) * i * A10
emi11

[1] 32.26719

Loan balance calculation in Excel - 1

Loan balance calculation in Excel - 2

Loan balance calculation in Excel - 3

Loan balance calculation in Excel - 4

= + × − EMIPn+1 Pn Pn in

Vectorisation in R
R supports vectorised calculations. An example:

-> No need to copy-paste or drag-down; it appears once

I have 2 vectors of values1
x <- c(1, 3, 5, 7)2
y <- c(2, 4, 6, 8)3
x4

[1] 1 3 5 7

y1

[1] 2 4 6 8

I want to add them together1
Because `+` is a vectorised operator, I can do:2
z <- x + y3
z4

[1] 3 7 11 15

It is not always easy to vectorise
Eg if subsequent values of a vector depend on the previous
value of the same vector.

Writing an explicit iterative loop is a o�en a solution. The
previous example:

It works but o�en verbose

z <- double(length = length(x)) # initialise output1
for (j in 1:length(z)) { # iterator 2
 z[j] <- x[j] + y[j] # body of loop3
}4
z5

[1] 3 7 11 15

Recursion may help
Recursion can potentially succinctly describe the calculation

We will explore a couple of functions that can help:
reduce() and accumulate()

But we will start with sum() and cumsum() which can be
considered special cases of the above

+, sum, cumsum

+ and sum
+ is a binary operator for addition, under the hood is a function

Can’t use more than 2 arguments (binary operator)

Can apply + iteratively, thankfully we have: sum

1 + 21

[1] 3

`+`(1, 2)1

[1] 3

`+`(1, 2, 3)1

Error in `+`(1, 2, 3): operator needs one or two arguments

`+`(3, `+`(1, 2)) # inconvenient1

[1] 6

sum(1, 2, 3)1

[1] 6

+ and cumsum

Calculate cumulative sum

Thankfully we have cumsum as a function

x <- c(1, 2, 3)1
x2

[1] 1 2 3

c(x[1], x[1] + x[2], x[1] + x[2] + x[3])1

[1] 1 3 6

cumsum(x)1

[1] 1 3 6

base::Reduce
Reduce uses a binary function to successively combine the
elements of a given vector

Define a vector

Successively combine elements of x using a binary function

Accumulate the successive reduce combinations

x <- c(1, 2, 3)1
x2

[1] 1 2 3

Reduce(f = `+`, x = x) # with + it is like sum1

[1] 6

Reduce(f = `+`, x = x, accumulate = TRUE) # with + it is like cumsum1

[1] 1 3 6

purrr::reduce and accumulate

Compared to base R, purrr functions consistently use . as a
prefix, are type stable, and all start with the data, followed by
the function

x <- c(1, 2, 3)1
purrr::reduce(.x = x, .f = `+`)2

[1] 6

purrr::accumulate(.x = x, .f = `+`)1

[1] 1 3 6

accumulate exercise 1
Start with a vector of values

Define a 2-argument function

Apply the function successively over the elements of x

x <- c(2, 3, 5)1
x2

[1] 2 3 5

fn <- function(a, b) {a^2 + b}1

first argument: result of previous application1
second argument: the next value of the vector2
purrr::accumulate(.x = x, .f = fn)3

[1] 2 7 54

accumulate exercise 2
Apply a 1-argument function to a single value for k times

Use accumulate() by neutralising the 2nd argument value

x <- 2 # the single value1
fn2 <- function(x, y) {x^2} # 1-arg function; we don't need y 2
k <- 5 # iterate k times3
first argument: the inital value provided by .init4
purrr::accumulate(.x = 1:(k-1), .f = fn2, .init = x)5

[1] 2 4 16 256 65536

Amortise
Using values of the first example:

A i n emi

1000 0.008333333 36 32.26719

we define:

And apply it

= + × − EMIPn+1 Pn Pn in

fn3 <- function(a, b) {a + a * i - emi}1

P <- purrr::accumulate(1:(n-1), fn3, .init = A)1
P[1:8]2

[1] 1000.0000 976.0661 951.9328 927.5984 903.0612
878.3196 853.3717
[8] 828.2159

Putting it all together for one value

Many working patterns are common between Excel and R. It
o�en pays off to switch mindset from spreadsheet computing
to programming (will see examples next week)

Data and parameter input ---------------------------------1
A <- 10002
n_yr <- 33
int_yr <- 0.14
Intermediate calculations --------------------------------5
n <- n_yr * 126
i <- int_yr / 127
emi <- (1 + i)^n / ((1 + i)^n - 1) * i * A8
Define amortisation function -----------------------------9
amortise <- function(a, b) {a + a * i - emi}10
apply it successively to the loan amount -----------------11
P <- purrr::accumulate(1:(n-1), amortise, .init = A)12
P[1:6] # print first few results13

[1] 1000.0000 976.0661 951.9328 927.5984 903.0612 878.3196

Next: From programming in R to
putting R into production
Building on current example:

Build functions to reuse logic and abstract away complexity

Iterate over all data with functional programming approach

Bundle functions into packages (programmer-to-
programmer interface)

Expose functions into Shiny (graphical user interface)

Expose functions into Web APIs (computer-to-computer
interface)

Join the R Consortium

Q&A

