
R/Insurance Webinars
Jan 2024

For the R Consortium’s R/Adoption Series

Welcome
1. From Excel to programming in R (today’s topic)

2. From programming in R to putting R into production

3. R performance culture

4. High performance programming in R

Delivered on behalf of the R Consortium by Georgios
Bakoloukas and Benedikt Schamberger, Actuarial Control,
Group Risk Management, Swiss Re

Background
Swiss Re internal R community sponsored by our Group
Chief Actuary Philip Long (Atelier programme)

2000+ community with 500+ regular coders who also
support each other

The case we see today appeared in our Microsoft Teams
community channel by an actuary in a high-growth market

Views expressed belong solely to the speakers and not
necessarily to the speaker’s employer

Running example for webinars 1 & 2
Insurer covers the remaining balance of loans in case of
death/disability of the borrower

Requires a quote for a portfolio of caa. 300,000 policies

Has provided information on a) loan amount b) loan
duration and c) interest rate for each policy

Problem: The actuary needs to calculate the sum-insured
profile for each policy as it amortises

A solution in Excel and a potential solution in R

A credit life insurance quote

Graphical user interfaces available
eg https://www.calculator.net/amortization-calculator.html

https://www.calculator.net/amortization-calculator.html

How to calculate the Equivalent
Monthly Installment (EMI)

For the derivation and an intuitive understanding see

EMI = × i × L
(1 + i)n

(1 + i − 1)n

https://math.stackexchange.com/questions/279844/how-the-
formula-for-emi-is-derived

https://math.stackexchange.com/questions/279844/how-the-formula-for-emi-is-derived
https://math.stackexchange.com/questions/279844/how-the-formula-for-emi-is-derived

Calculating EMI in Excel and R is
similar

Data and parameter input1
A <- 10002
n_yr <- 33
int_yr <- 0.14

5
Intermediate calculation6
n <- n_yr * 127
i <- int_yr / 128

9
emi <- (1 + i)^n / ((1 + i)^n - 1) * i * A10
emi11

[1] 32.26719

Loan balance calculation in Excel - 1

Loan balance calculation in Excel - 2

Loan balance calculation in Excel - 3

Loan balance calculation in Excel - 4

= + × − EMIPn+1 Pn Pn in

Vectorisation in R
R supports vectorised calculations. An example:

-> No need to copy-paste or drag-down; it appears once

I have 2 vectors of values1
x <- c(1, 3, 5, 7)2
y <- c(2, 4, 6, 8)3
x4

[1] 1 3 5 7

y1

[1] 2 4 6 8

I want to add them together1
Because `+` is a vectorised operator, I can do:2
z <- x + y3
z4

[1] 3 7 11 15

It is not always easy to vectorise
Eg if subsequent values of a vector depend on the previous
value of the same vector.

Writing an explicit iterative loop is a often a solution. The
previous example:

It works but often verbose

z <- double(length = length(x)) # initialise output1
for (j in 1:length(z)) { # iterator 2
 z[j] <- x[j] + y[j] # body of loop3
}4
z5

[1] 3 7 11 15

Recursion may help
Recursion can potentially succinctly describe the calculation

We will explore a couple of functions that can help:
reduce() and accumulate()

But we will start with sum() and cumsum() which can be
considered special cases of the above

+, sum, cumsum

+ and sum
+ is a binary operator for addition, under the hood is a function

Can’t use more than 2 arguments (binary operator)

Can apply + iteratively, thankfully we have: sum

1 + 21

[1] 3

`+`(1, 2)1

[1] 3

`+`(1, 2, 3)1

Error in `+`(1, 2, 3): operator needs one or two arguments

`+`(3, `+`(1, 2)) # inconvenient1

[1] 6

sum(1, 2, 3)1

[1] 6

+ and cumsum

Calculate cumulative sum

Thankfully we have cumsum as a function

x <- c(1, 2, 3)1
x2

[1] 1 2 3

c(x[1], x[1] + x[2], x[1] + x[2] + x[3])1

[1] 1 3 6

cumsum(x)1

[1] 1 3 6

base::Reduce
Reduce uses a binary function to successively combine the
elements of a given vector

Define a vector

Successively combine elements of x using a binary function

Accumulate the successive reduce combinations

x <- c(1, 2, 3)1
x2

[1] 1 2 3

Reduce(f = `+`, x = x) # with + it is like sum1

[1] 6

Reduce(f = `+`, x = x, accumulate = TRUE) # with + it is like cumsum1

[1] 1 3 6

purrr::reduce and accumulate

Compared to base R, purrr functions consistently use . as a
prefix, are type stable, and all start with the data, followed by
the function

x <- c(1, 2, 3)1
purrr::reduce(.x = x, .f = `+`)2

[1] 6

purrr::accumulate(.x = x, .f = `+`)1

[1] 1 3 6

accumulate exercise 1
Start with a vector of values

Define a 2-argument function

Apply the function successively over the elements of x

x <- c(2, 3, 5)1
x2

[1] 2 3 5

fn <- function(a, b) {a^2 + b}1

first argument: result of previous application1
second argument: the next value of the vector2
purrr::accumulate(.x = x, .f = fn)3

[1] 2 7 54

accumulate exercise 2
Apply a 1-argument function to a single value for k times

Use accumulate() by neutralising the 2nd argument value

x <- 2 # the single value1
fn2 <- function(x, y) {x^2} # 1-arg function; we don't need y 2
k <- 5 # iterate k times3
first argument: the inital value provided by .init4
purrr::accumulate(.x = 1:(k-1), .f = fn2, .init = x)5

[1] 2 4 16 256 65536

Amortise
Using values of the first example:

A i n emi

1000 0.008333333 36 32.26719

we define:

And apply it

= + × − EMIPn+1 Pn Pn in

fn3 <- function(a, b) {a + a * i - emi}1

P <- purrr::accumulate(1:(n-1), fn3, .init = A)1
P[1:8]2

[1] 1000.0000 976.0661 951.9328 927.5984 903.0612
878.3196 853.3717
[8] 828.2159

Putting it all together for one value

Many working patterns are common between Excel and R. It
often pays off to switch mindset from spreadsheet computing
to programming (will see examples next week)

Data and parameter input ---------------------------------1
A <- 10002
n_yr <- 33
int_yr <- 0.14
Intermediate calculations --------------------------------5
n <- n_yr * 126
i <- int_yr / 127
emi <- (1 + i)^n / ((1 + i)^n - 1) * i * A8
Define amortisation function -----------------------------9
amortise <- function(a, b) {a + a * i - emi}10
apply it successively to the loan amount -----------------11
P <- purrr::accumulate(1:(n-1), amortise, .init = A)12
P[1:6] # print first few results13

[1] 1000.0000 976.0661 951.9328 927.5984 903.0612 878.3196

Next: From programming in R to
putting R into production
Building on current example:

Build functions to reuse logic and abstract away complexity

Iterate over all data with functional programming approach

Bundle functions into packages (programmer-to-
programmer interface)

Expose functions into Shiny (graphical user interface)

Expose functions into Web APIs (computer-to-computer
interface)

Join the R Consortium

Q&A

