R/Insurance Webinars Jan 2024

For the R Consortium's R/Adoption Series

Welcome

1. From Excel to programming in R (today's topic)
2. From programming in R to putting R into production
3. R performance culture
4. High performance programming in R

Delivered on behalf of the R Consortium by Georgios Bakoloukas and Benedikt Schamberger, Actuarial Control, Group Risk Management, Swiss Re

Background

- Swiss Re internal R community sponsored by our Group Chief Actuary Philip Long (Atelier programme)
- 2000+ community with $500+$ regular coders who also support each other
- The case we see today appeared in our Microsoft Teams community channel by an actuary in a high-growth market
- Views expressed belong solely to the speakers and not necessarily to the speaker's employer

Running example for webinars 1 \& 2

- Insurer covers the remaining balance of loans in case of death/disability of the borrower
- Requires a quote for a portfolio of caa. 300,000 policies
- Has provided information on a) loan amount b) loan duration and c) interest rate for each policy
- Problem: The actuary needs to calculate the sum-insured profile for each policy as it amortises
- A solution in Excel and a potential solution in R

A credit life insurance quote

Graphical user interfaces available

eg https://www.calculator.net/amortization-calculator.html

Amortization Calculator

Optional: make extra payments
\square
Calculate

Monthly Pay: \$32.27

Total of 36 monthly payments $\$ 1,161.62$ Total interest
\$161.62

Amortization schedule
Annual Schedule

Monthly Schedule			
Year Interest Principal	Ending Balance		
1	$\$ 86.46$	$\$ 300.74$	$\$ 699.26$
2	$\$ 54.97$	$\$ 332.23$	$\$ 367.02$
3	$\$ 20.18$	$\$ 367.02$	$\$-0.00$

How to calculate the Equivalent Monthly Installment (EMI)

$$
E M I=\frac{(1+i)^{n}}{(1+i)^{n}-1} \times i \times L
$$

For the derivation and an intuitive understanding see https://math.stackexchange.com/questions/279844/how-the-formula-for-emi-is-derived

Calculating EMI in Excel and R is similar

C13			$\times \vee f_{x}$			$=(1+C 9)^{\wedge} \mathrm{C} 5 /\left((1+C 9)^{\wedge} \mathrm{C} 5-1\right)^{*} \mathrm{C} 9 * \mathrm{C} 3$					
\bigcirc Internal $/$											
	A		B				c		D		
1											
2			a inp								Moı
3			a A	ount				,000			Moı
4			Te	(in	years			3			Tim
5			n Te	n (in	mon			36			

Parameter input
Interest Rate (Annual Percentage Rate)

,
Equivalent monthly payment Equiva
32.27.
$1,161.62$
161.62
Total Interest
Key
inputs
Distinct calc in column

```
# Data and parameter input
A <- 1000
n_yr <- 3
int_yr <- 0.1
# Intermediate calculation
n <- n_yr * 12
i <- int_yr / 12
emi <- (1 + i)^n / ((1 + i)^n - 1) * i * A
emi
[1] 32.26719
```


Loan balance calculation in Excel - 1

SUM -		$\vdots \times f_{x} \quad=\mathrm{F} 5+\mathrm{G} 5-\mathrm{C}$ 13									
Internal											
4	A	B	C	D	E	F	G	H	1	J	
1											
2		Data input	$1,000$		Modelling and output						
3		Loan Amount			Monthly cashflows						
4		Loan Term (in years)	3		Time-months	Balance - BoP	Interest	Principal	Balance - EoP	Time-years	
5		Loan Term (in months)	36		11	1,000.00	8.33	23.93	=F5+G5-C\$13 I	1	
6					2	976.07	8.13	24.13	951.93	1	
7		Parameter input			3	951.93	7.93	24.33	927.60	1	
8		Interest Rate (Annual Percentage Rate)	10\%		4	927.60	7.73	24.54	903.06	1	
9		Monthly interest rate	0.83\%		5	903.06	7.53	24.74	878.32	1	
10					6	878.32	7.32	24.95	853.37	1	
11		Modelling and Output			7	853.37	7.11	25.16	828.22	1	
12		Equivalent monthly payment			8	828.22	6.90	25.37	802.85	1	
13		EMI	32.27		9	802.85	6.69	25.58	777.27	1	
14		Total Payments	1,161.62		10	777.27	6.48	25.79	751.48	1	
15		Total Interest	161.62		11	751.48	6.26	26.00	725.48	1	
16					12	725.48	6.05	26.22	699.26	1	
17		Key			13	699.26	5.83	26.44	672.82	2	
18		Inputs			14	672.82	5.61	26.66	646.16	2	
19		Distinct calc in column			15	646.16	5.38	26.88	619.27	2	
20					16	619.27	5.16	27.11	592.17	2	

Loan balance calculation in Excel - 2

Loan balance calculation in Excel - 3

SUM		$\vdots \times \checkmark \quad f_{x} \quad=15$									
\bigcirc Internal											
4	A	B	C	D	E	F	G	H	1	J	
1											
2		Data input			Modelling and out	tput					
3		Loan Amount	1,000		Monthly cashflow						
4		Loan Term (in years)	3		Time-months	Balance - BoP	Interest	Principal	Balance - EoP	Time-years	
5		Loan Term (in months)	36		1	1,000.00	8.33	23.93	976.07	1	
6					2	=15 I	8.13	24.13	951.93	1	
7		Parameter input			3	951.93	7.93	24.33	927.60	1	
8		Interest Rate (Annual Percentage Rate)	10\%		4	927.60	7.73	24.54	903.06	1	
9		Monthly interest rate	0.83\%		5	903.06	7.53	24.74	878.32	1	
10					6	878.32	7.32	24.95	853.37	1	
11		Modelling and Output			7	853.37	7.11	25.16	828.22	1	
12		Equivalent monthly payment			8	828.22	6.90	25.37	802.85	1	
13		EMI	32.27		9	802.85	6.69	25.58	777.27	1	
14		Total Payments	1,161.62		10	777.27	6.48	25.79	751.48	1	
15		Total Interest	161.62		11	751.48	6.26	26.00	725.48	1	
16					12	725.48	6.05	26.22	699.26	1	
17		Key			13	699.26	5.83	26.44	672.82	2	
18		Inputs			14	672.82	5.61	26.66	646.16	2	
19		Distinct calc in column			15	646.16	5.38	26.88	619.27	2	
20					16	619.27	5.16	27.11	592.17	2	

Loan balance calculation in Excel - 4

4	B	C	D	E	F	1
1						
2	Data input			Modelling and output		
3	Loan Amount	1000		Monthly cashflows		
4	Loan Term (in years)	3		Time-months	Balance - BoP	Balance - EoP
5	Loan Term (in months)	= $\mathrm{C} 4 * 12$		1	= C3	=F5+F5*C\$9-C\$13
6				$=\mathrm{E} 5+1$	$=15$	=F6+F6*C\$9-C\$13
7	Parameter input			$=\mathrm{E} 6+1$	$=16$	=F7+F7*C\$9-C\$13
8	Interest Rate (Annual Percentage Rate)	0.1		$=E 7+1$	$=17$	=F8+F8*C\$9-C\$13
9	Monthly interest rate	$=\mathrm{C} 8 / 12$		$=\mathrm{E} 8+1$	$=18$	=F9+F9*C\$9-C\$13
10				=E9+1	$=19$	$=\mathrm{F} 10+\mathrm{F} 10 * \mathrm{C}$ \$9-C\$13
11	Modelling and Output			$=\mathrm{E} 10+1$	$=110$	$=\mathrm{F} 11+\mathrm{F} 11{ }^{*} \mathrm{C} \$ 9-\mathrm{C} \$ 13$
12	Equivalent monthly payment			$=\mathrm{E} 11+1$	$=111$	$=\mathrm{F} 12+\mathrm{F} 12$ * $\$ 9 . \mathrm{C} \$ 13$
13	EMI	$=(1+\mathrm{C} 9)^{\wedge} \mathrm{C} 5 /\left((1+\mathrm{C} 9)^{\wedge} \mathrm{C} 5-1\right)^{*} \mathrm{C} 9$ * C 3		$=\mathrm{E} 12+1$	$=112$	$=\mathrm{F} 13+\mathrm{F} 13 * \mathrm{C}$ \$9-C\$13
14	Total Payments	= $\mathrm{C} 13 * \mathrm{C} 5$		$=\mathrm{E} 13+1$	$=113$	$=\mathrm{F} 14+\mathrm{F} 14 * \mathrm{C} \$ 9-\mathrm{C} \$ 13$
15	Total Interest	=SUM(G5:G148)		=E14+1	$=114$	$=\mathrm{F} 15+\mathrm{F} 15{ }^{*} \mathrm{C} \$ 9-\mathrm{C} \$ 13$
16				$=\mathrm{E} 15+1$	$=115$	$=\mathrm{F} 16+\mathrm{F} 16^{*} \mathrm{C} \$ 9-\mathrm{C} \$ 13$
17	Key			$=\mathrm{E} 16+1$	$=116$	=F17+F17*C\$9-C\$13
18	Inputs			$=\mathrm{E} 17+1$	$=117$	$=\mathrm{F} 18+\mathrm{F} 18{ }^{*} \mathrm{C} \$ 9-\mathrm{C} \$ 13$
19	Distinct calc in column			$=\mathrm{E} 18+1$	$=118$	=F19+F19*C\$9-C\$13
20				$=\mathrm{E} 19+1$	$=119$	=F20+F20*C\$9-C\$13
21				=E20+1	$=120$	$=\mathrm{F} 21+\mathrm{F} 21$ * C \$9-C\$ 13
22				$=\mathrm{E} 21+1$	$=121$	$=\mathrm{F} 22+\mathrm{F} 22^{*} \mathrm{C} \$ 9-\mathrm{C} \$ 13$
23				$=\mathrm{E} 22+1$	$=122$	$=\mathrm{F} 23+\mathrm{F} 23{ }^{*} \mathrm{C} \$ 9-\mathrm{C} \$ 13$
24				=E23+1	$=123$	$=\mathrm{F} 24+\mathrm{F} 24 * \mathrm{C}$ \$ $9-\mathrm{C} \$ 13$

$$
P_{n+1}=P_{n}+P_{n} \times i_{n}-E M I
$$

Vectorisation in R

R supports vectorised calculations. An example:

```
# I have 2 vectors of values
x <- c(1, 3, 5, 7)
<-c(2, 4, 6, 8)
[1] 1 3 5 7
```

```
    Y
```

 Y
 [1] 2 4 6 8
[1] 2 4 6 8
\# I want to add them together
\# I want to add them together
\# Because `+` is a vectorised operator, I can do:
\# Because `+` is a vectorised operator, I can do:
z <- x + y
z <- x + y
Z
Z
[1] 3 7 11 15
-> No need to copy-paste or drag-down; it appears once

```

\section*{It is not always easy to vectorise}

Eg if subsequent values of a vector depend on the previous value of the same vector.

Writing an explicit iterative loop is a often a solution. The previous example:
```

l}\begin{array}{l}{1}
{\mathrm{ z <- double(length = length(x))}}
{2}
{\mathrm{ for (j in 1:length(z)) {}}
{3}
{4}
{4}
{4}
{5}
{5}
{\mathrm{ z [j] <- x[j] + y[j] }}

```

It works but often verbose

\section*{Recursion may help}

Recursion can potentially succinctly describe the calculation
- We will explore a couple of functions that can help: reduce() and accumulate()
- But we will start with sum( ) and cumsum() which can be considered special cases of the above

\section*{+, sum, cumsum}

\section*{+ and sum}
+ is a binary operator for addition, under the hood is a function
\(\left.\begin{array}{l}\begin{array}{rl}1 & 1+2 \\ {[1]} & 3 \\ 1 & \ddots\end{array}{ }^{\prime}(1,\end{array}\right)\)
[1] 3
Can't use more than 2 arguments (binary operator)
\(1{ }^{\prime}+(1,2,3)\)
Error in \({ }^{\prime}+{ }^{\prime}(1,2,3)\) : operator needs one or two arguments

Can apply + iteratively, thankfully we have: sum
\begin{tabular}{lll}
1 & \(`\) \\
\\
{\([1]\)} & \((3, `+`(1,2)) \quad \#\) inconvenient \\
1 & \(\operatorname{sum}(1,2,3)\)
\end{tabular}

\section*{+ and cumsum}
```

1 x <- c(1, 2, 3)
[1] 1 2 3

```

Calculate cumulative sum
```

1 c(x[1], x[1] + x[2], x[1] + x[2] + x[3])
[1] 1 3 6

```

Thankfully we have cumsum as a function
```

 1 cumsum(x)
 [1] 1 3 6

```

\section*{base: :Reduce}

Reduce uses a binary function to successively combine the elements of a given vector
Define a vector
```

l}$$
\begin{array}{lll}{1}&{x}&{<- c(1, 2, 3)}\\{2}&{x}\end{array}
$$

```

Successively combine elements of \(x\) using a binary function
\(1 \operatorname{Reduce}\left(f={ }^{\prime}+`, x=x\right) \quad\) \# with + it is like sum
[1] 6
Accumulate the successive reduce combinations
1 Reduce \((f=`+`, x=x\), accumulate \(=\) TRUE \() \quad \#\) with + it is like cumsum

\section*{purre::reduce and accumulate}
```

1 x <- c(1, 2, 3)
2 purrr::reduce(.x = x, .f = `+`)

```
[1] 6
    purrr: :accumulate (. \(\mathrm{x}=\mathrm{x}, . \mathrm{f}=`+`\) )
[1] 136

Compared to base R, purrr functions consistently use . as a prefix, are type stable, and all start with the data, followed by the function

\section*{accumulate exercise 1}

Start with a vector of values
```

 1 x <- c(2, 3, 5)
 2 x
[1] 2 3 5

```

Define a 2 -argument function
```

1 fn <- function(a, b) {a^2 + b }

```

Apply the function successively over the elements of \(x\)
```


first argument: result of previous application

second argument: the next value of the vector

purrr::accumulate(.x = x, .f = fn)
[1] 2 7 54

```

\section*{accumulate exercise 2}
- Apply a 1-argument function to a single value for \(k\) times
- Use accumulate( ) by neutralising the 2nd argument value


\section*{Amortise}

Using values of the first example:
\begin{tabular}{crrr}
\hline A & i & n & emi \\
\hline 1000 & 0.008333333 & 36 & 32.26719 \\
\hline
\end{tabular}
we define: \(P_{n+1}=P_{n}+P_{n} \times i_{n}-E M I\)
```

1 fn3 <- function(a, b) {a + a * i - emi}

```

\section*{And apply it}


\section*{Putting it all together for one value}


Many working patterns are common between Excel and R. It often pays off to switch mindset from spreadsheet computing to programming (will see examples next week)

\section*{Next: From programming in R to putting R into production}

Building on current example:
- Build functions to reuse logic and abstract away complexity
- Iterate over all data with functional programming approach
- Bundle functions into packages (programmer-toprogrammer interface)
- Expose functions into Shiny (graphical user interface)
- Expose functions into Web APIs (computer-to-computer interface)

\section*{Join the R Consortium}

\section*{\(\because \cdot \mathrm{R}:\) consortium}

\section*{R Consortium Impact}
- R Consortium Community Grants and Sponsorships Over USD \$1.4 Million
- Organize large scale collaborative projects
- R Validation Hub
- R-Ladies
- Diversity and Inclusion Working Group
- Co-host multidisciplinary data science forums
- Stanford Data Institute
- Direct support for key \(\mathbf{R}\) events
- R/Medicine, R/Pharma, useR!, LatinR, more
- Direct support for R User Groups


Organizations Can Become a Member Today!

Email Joseph Rickert at director@r-consortium.org to set up first call

\section*{Q\&A}```

